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Fractional dynamics and nonlinear harmonic responses in dielectric relaxation
of disordered liquids

Jean-Louis De´jardin
Centre d’Etudes Fondamentales, Groupe de Physique Mole´culaire, Universite´ de Perpignan, 52 Avenue de Villeneuve,

66860 Perpignan Cedex, France
~Received 24 February 2003; published 29 September 2003!

The problem of the nonlinear dielectric response due to the application of a strong electric field is recon-
sidered in the context of fractional kinetic equations. To accomplish that, we start from a fractional noninertial
Fokker-Planck equation and restrict ourselves to the case of anomalous subdiffusive processes characterized by
the critical exponenta ranging from 0 to 1, the limit of normal diffusion. In particular, we evaluate the first-
and third-order nonlinear harmonic components of the electric polarization in the case of either a pure ac field
or a strong dc bias field superimposed on a weak ac field. The stationary regime is therefore calculated from an
infinite set of differential recurrence relations by using a perturbation method. The results so obtained are
illustrated by three-dimensional dispersion and absorption plots in order to show the influence ofa. Cole-Cole
diagrams are also presented, allowing one to see that the arcs become more and more flattened asa→0, and
corresponding to a broadening of the absorption peaks as effectively observed in complex liquids. The theo-
retical model is supported by comparison with experimental data of the third-order nonlinear dielectric per-
mittivity of a ferroelectric liquid crystal.
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I. INTRODUCTION

In the area of physics dealing with complex fluids lik
liquid crystals, glass-forming liquids, polymeric systems,
quote but a few, it is experimentally observed that the ti
evolution of the dielectric relaxation processes can no lon
be described in the form of an exponential function as in
Debye model, but rather follows the Kohlrausch-William
Watt law corresponding to a stretched exponential funct
@1–6#. As a consequence, in the frequency domain, when
systems are acted on by ac electric fields, the absorp
spectra are characterized by broadened relaxation peaks@7#.
In view of reproducing such typical patterns, three differe
empirical expressions are generally used for fitting the c
responding experimental data. Expressed in normali
forms, and considering, for instance, the responses prov
with the complex electric susceptibilitiesx~v!, v being the
angular frequency of the applied ac electric field, they are
Cole-Cole equation@8#

x~v!5
1

11~ ivtCC!a , 0,a<1, ~1!

the Davidson-Cole equation@9#

x~v!5
1

~11 ivtDC!b , 0,b<1, ~2!

and the combined Havriliak-Negami equation@10#

x~v!5
1

@11~ ivtHN!a#b , ab<1, ~3!

where tCC, tDC, and tHN are the characteristic relaxatio
times, anda,b are the stretching exponents. Fora5b51,
the well-known formulas corresponding to normal diffusi
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are recovered. As soon asa ~or b! becomes different from
unity, anomalous diffusion takes place, which is what effe
tively occurs in disordered media. In order to account for
dielectric relaxation of such systems, it is possible to us
fractional Fokker-Planck equation, based on the continuo
time random walk, as shown recently by many authors@11–
13#. Moreover, solution of the fractional equations may
accomplished in the same manner as that well developed
the usual partial differential equations@12#.

In this paper, we shall restrict ourselves to the case wh
the fractal exponenta ranges from 0 to 1, which correspond
to the subdiffusive regime characterized by a much slow
decrease of the fractional relaxation function for long tim
than that observed with the exponential~superslow process!
@14#. An attempt to give a demonstration of the Cole-Co
formula was recently derived by Novikov and Privalko@2#,
who used a phenomenological relaxation function to desc
the electric polarization. The same result was also obtai
by Coffey et al. @15# from the noninertial Fokker-Planck
equation. Hence, we shall try to extend the usual theory~nor-
mal diffusion! of the nonlinear dielectric response to th
context of fractional dynamics. To accomplish this, we co
sider a dilute solution consisting of an assembly of nonint
acting, rigid, polar, and symmetric-top molecules. With su
assumptions, we can consider the rotational motion o
single molecule having a permanent dipole momentm under
the application of an external electric fieldE(t). In what
follows, we shall seek results obtained for two different ele
tric fields, namely, either a pure alternating fieldE(t)
5E1 cos(vt), or a strong dc constant bias field on which
superimposed a weak ac field in the same direction,E(t)
5E01E1 cos(vt) with E1 /E0!1, and we shall calculate fo
the stationary process~i.e., when the system has removed
the transient effects so that we consider its behavior a l
time after the electric field has been switched on! the har-
©2003 The American Physical Society08-1



to

g
i-

al

ua
-
rn
ro

m

such

of
eld

the
the
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monic components of the electric susceptibility valid up
the third order in the electric field strength.

II. THEORY

For one molecule whose symmetry axis makes the an
q with the electric field, the orientational probability distr
bution functionW(q,t) in the framework of fractional dy-
namics obeys the following partial fractional differenti
equation written in configuration space only:

]W~q,t !

]t
5~2DR!a

0Dt
12a 1

2 sinq

]

]q FsinqS ]W~q,t !

]q D
1

W~q,t !

kT

]V~q,t !

]q G , ~4!

whereV(q) is the orientational potential energy given by

V~q!52mE~ t !cosq, ~5!

DR is the rotational diffusion constant equal to (2t)21, t
being the Debye relaxation time, and0Dt

12a is the Riemann-
Liouville operator defined by@16#

0Dt
12a5

]

]t 0Dt
2a , ~6!

with

0Dt
2aW~q,t !5

1

G~a!
E

0

t

~ t2t8!2~12a!W~q,t8!dt8. ~7!

We note that Eq.~4! is valid if inertial effects are completely
ignored and reduces to the well-known Smoluchowski eq
tion if a51. From Eq.~7!, which has the form of a convo
lution product, one notes the presence of a memory ke
indicating the non-Markovian nature of the subdiffusive p
cess. It is also important to note that the Laplace transform
Eq. ~7! is simply given by@16,17#

L@0Dt
2aW~q,t !#5p2aW̃~q,p!, ~8!

where

W̃~q,p!5L@W~q,t !#5E
0

1`

e2ptW~q,t !dt. ~9!

Since the Riemann-Liouville operator acts only on the ti
variable and not on the angular~space! variable, we can use
classical methods for solving Eq.~4!. By settingu5cosq,
multiplying both sides of Eq.~4! by Pn(u), thenth Legendre
polynomial, and integrating from21 to 11 over the variable
u, we arrive at
03110
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dt
^Pn~u!&~ t !5~2DR!a

0Dt
12aH 2@n~n11!/2#^Pn~u!&~ t !

1~g01g1 cosvt !
n~n11!

2~2n11!

3@^Pn21~u!&~ t !2^Pn11~u!&~ t !#J , ~10!

where the angular brackets stand for ensemble averages
that

^Pn~u!&~ t !5E
21

11

Pn~u!W~u,t !du

5E
0

p

Pn~cosq!W~q,t !sinq dq, ~11!

and

g05
mE0

kT
, g15

mE1

kT
~12!

are two dimensionless parameters giving the importance
the orientational potential energy due to the electric fi
with respect to the thermal energy~k is the Boltzmann con-
stant andT is the absolute temperature!. Now, considering
again the Riemann-Liouville operator~fractional derivative!
and using the properties

~0Dt
12a!21~]/]t !5~]/]t !21~Dt

2a!21~]/]t !50Dt
a

~13!

and

~0Dt
12a!21

0Dt
12a51 ~ identity operator!, ~14!

Eq. ~10! becomes

0Dt
a^Pn~u!&~ t !5~2DR!aH 2@n~n11!/2#^Pn~u!&~ t !

1~g01g1 cosvt !
n~n11!

2~2n11!

3@^Pn21~u!&~ t !2^Pn11~u!&~ t !#J .

~15!

Since we are solely interested in the determination of
stationary ac response, which is obviously independent of
initial conditions, we can seek the solution of Eq.~15! in the
form @18–20#

f n~ t !5^Pn~u!&~ t !5 (
k52`

1`

Fk
n~v!eikvt, ~16!

where the Fourier amplitudesFk
n(v) satisfy the following

condition ~the asterisk stands for the complex conjugate!:
8-2
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F2k
n ~v!5@Fk

n~v!#* , ~17!

because the expectation values of the Legendre polynom
f n , are real functions of the time variablet.

The physical quantity that is interesting from an expe
mental point of view and characteristic of dielectric rela
ation is the electric polarization defined by

P~ t !5Nm^P1~u!&~ t !5Nm f 1~ t !, ~18!

where N represents the number of molecules per unit v
ume. It is this quantity that we shall now evaluate for bo
types of electric field we mentioned at the end of the Int
duction.

III. DIELECTRIC RESPONSE IN THE CASE OF
SUPERIMPOSED ELECTRIC FIELDS

In the situation where a strong dc bias field is super
posed at the same time on a weak ac electric field, the s
tion for f 1(t) can be presented in the form

f 1~ t !5F0
1~v!12(

k51

1`

Re@Fk
1~v!eikvt#. ~19!

The first termF0
1(v) in the right-hand side of Eq.~19! is a

time-independent but frequency-dependent term due to
presence of the dc fieldE0 . In order to calculate the Fourie
coefficients of Eq.~19!, it suffices to substitute the expre
sion for f n(t) of Eq. ~16! into Eq. ~15!, which yields

F S ivk

2DR
D a

1
n~n11!

2 GFk
n~v!

5g0

n~n11!

2~2n11!
@Fk

n21~v!2Fk
n11~v!#1g1

n~n11!

4~2n11!

3@Fk21
n21~v!1Fk11

n21~v!2Fk21
n11~v!2Fk11

n11~v!#,

~20!
i

e
po
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Fk
n~v!xk,n~v!22g0@Fk

n21~v!2Fk
n11~v!#

2g1@Fk21
n21~v!1Fk11

n21~v!2Fk21
n11~v!2Fk11

n11~v!#50,

~21!

where

xk,n~v!52~2n11!F11
2

n~n11! S ivk

2DR
D aG . ~22!

If we restrict ourselves to the third order in the electric fie
strength, the time-independent termF0

1(v) will contain
quantities proportional tog0 , g0

3, andg0g1
2 only. By using a

perturbation procedure on the set of differential recurre
relations Eq.~21!, we obtain fork50, n51

F0
1~v!5

g0

3 S 12
g0

2

15D
2

g0g1
2

3
ReS 1

5x21,1
1

2

x21,1x21,2
1

1

3x21,2
D ,

~23!

where the notation ‘‘Re’’ stands for the ‘‘real part of,’’ an
settingv85v/(2DR) as reduced variable

x21,1~v8!56@11~2 iv8!a#,

x21,2~v8!510@11~2 iv8!a/3#. ~24!

After some calculation, it is found that the explicit expre
sion for F0

1(v8) is
F0
1~v8!5

g0

3 S 12
g0

2

15D 2
g0g1

2

90

271~23/2!v82a14v8a~121v82a!cos~pa/2!19v82a cos2~pa/2!1~9/2!v82a cos~pa!

@112v8a cos~pa/2!1v82a#@916v8a cos~pa/2!1v82a#
.

~25!
y

For a51, this equation yields the result already obtained
@21,22#.

We can proceed in the same manner as that used abov
determining the first-harmonic component of the electric
larization. By again keeping the third-order terms only, t
quantity is proportional tog1 andg0

2g1 , and so provides the
nonlinear response in the ac electric field. Written in comp
form, one has fork521, n51
n

for
-

x

F21
1 ~v8!52

2g0

x21,1
F21

2 ~v8!1
g1

x21,1
@12F0

2~v8!#

52
2g0

x21,1
S 2g0g1

x21,1x21,2
1

g0g1

3x21,2
D1

g1

x21,1
S 12

g0
2

15D .

~26!

In Eq. ~26!, we recognize the linear contribution given b
8-3
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(x21,1)
21. Hence, by substituting the expressions given

Eq. ~24! in Eq. ~26!, we have

F21
1 ~v8!5

g1

6@11~2 iv8!a#

2
g0

2g1

90

11@11~2 iv8!a#@21~2 iv8!a/3#

@11~2 iv8!a#2@11~2 iv8!a/3#
,

~27!

The second term in Eq.~27! is characteristic of the Langevi
saturation with a negative contribution. We can therefore
in normal diffusion define a complex nonlinear dielectric i
crement such that

D«NL~v8!5
2F21

1 ~v8!

g1
2

1

3@11~2 iv8!a#

52
g0

2

45

11@11~2 iv8!a#@21~2 iv8!a/3#

@11~2 iv8!a#2@11~2 iv8!a/3#
,

~28!

where the subscript ‘‘NL’’ stands for nonlinear, and the fac
of 2 beforeF21

1 (v8) arises from the definition given in Eq
~17!. For a51, Eq. ~28! coincides exactly with the result
previously obtained by Coffey and Paranjape@23# ~see also
Ref. @22#!. It is interesting to make a partial fraction decom
position of Eq.~28! with the aim of extending this expressio
to the time domain, which is also of importance if one refe
to some experimental work, namely,

D«NL~v8!52
g0

2

45F 3/2

@11~2 iv8!a#2 1
7/4

11~2 iv8!a

2
3/4

31~2 iv8!aG . ~29!

In order to show the temporal evolution of each term in E
~29!, it is convenient to introduce the following function:

g~ t !5
ta21

t
Ea,aS 2

ta

t D , 0,a<1, ~30!

whose Laplace transform is

G~p!5E
0

1`

e2ptg~ t !dt5
1

11tpa , ~31!

where

Ea,a~2z!5 (
k50

1`
~2z!k

G~ak1a!
~32!

is the generalized Mittag-Leffler function@24#, which re-
duces to the exponential one fora51, andt is the relaxation
time equal to (2DR)21. Applying this definition to Eq.~29!,
one obtains
03110
y

s

r

s

.

D«NL~ t !52
g0

2

45 H 3

2

ta21

ta Ea,aF2S t

t D aG ^
ta21

ta Ea,a

F2S t

t D aG1
7

4

ta21

ta Ea,aF2S t

t D aG
2

3

4

ta21

ta Ea,aF23S t

t D aG J , ~33!

where the symbol̂ represents a convolution product su
as

h~ t ! ^ l ~ t !5E
0

t

h~ t2t8!l ~ t8!dt85E
0

t

l ~ t2t8!h~ t8!dt8,

~34!

with the important property of the Laplace transform

L@h~ t ! ^ l ~ t !#5L@h~ t !#L@ l ~ t !#. ~35!

In order to simplify the presentation of the above results,
shall use the following reduced quantities:

X0~v8!5FF0
1~v8!2

g0

3 S 12
g0

2

45D G 90

g0g1
2 , ~36!

DX1~v8!5DX18~v8!2 iDX19~v8!545
D«NL~v8!

g0
2 ,

~37!

whereX0(v8) describes in fact the variations of the seco
term in the right-hand side of Eq.~25! since only this term is
frequency-dependent. The dc componentX0(v8) of the elec-
tric polarization is presented in Fig. 1 fora values ranging
from 0 to 1 ~subdiffusive process!. One can remark that the
asymptotic valueX0(`)50 is more rapidly attained when
a→1. Everywhere else,X0(v8) takes on negative values. I
Figs. 2 and 3 are pictured the realDX18 and imaginaryDX19
parts of the complex nonlinear dielectric incrementDX1(v8)
as a function ofv8 and a (0,a<1) corresponding to the
contribution of the first-harmonic component to the line

FIG. 1. Three-dimensional~3D! plot of the steady-state compo
nentX0 as a function of the reduced angular frequencyv8 and the
fractional parametera.
8-4



a-
u

of
-

,
a
e
za

al

e-

ric
a-

n-

FRACTIONAL DYNAMICS AND NONLINEAR HARMONI C . . . PHYSICAL REVIEW E 68, 031108 ~2003!
response in the ac electric field. The highera is, the steeper
is the slope in the increase of the dispersion plot@DX18(v8)#.
Regarding the absorption curvesDX19(v8), the height of the
peaks increases in proportion toa while their maxima shift
to the lowest frequencies asa decreases. The Cole-Cole di
grams~Fig. 4! demonstrate the influence of the anomalo
exponenta, with decreasing amplitudes of the arcs asa di-
minishes. It is worth noting from these plots thatDX18(v8)
and DX19(v8) are always negative, with the exception
DX18(v8) for a51 ~normal diffusion!, which becomes posi
tive in the high-frequency region.

IV. NONLINEAR DIELECTRIC RESPONSE IN PRESENCE
OF A PURE ac ELECTRIC FIELD

In the absence of the dc bias field (g050), there are no
longer constant terms in the dielectric response. Hence
limiting ourselves again to the third order of the extern
electric perturbation, we shall evaluate the analytic expr
sions for the harmonic components of the electric polari
tion varying at the fundamental frequencyv ~first harmonic!
and at 3v ~third harmonic!. From Eq.~21! in which we put
g050, we have now to solve the following set of differenti
recurrence relations:

FIG. 2. 3D plot of the real part of the nonlinear dielectric incr
mentDX18 ~first-harmonic component of the electric polarization! as
a function ofv8 anda.

FIG. 3. 3D plot of the imaginary part of the nonlinear dielect
incrementDX19 ~first-harmonic component of the electric polariz
tion! as a function ofv8 anda.
03110
s

by
l
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Fk
n~v8!xk,n~v8!5g1@Fk21

n21~v8!1Fk11
n21~v8!2Fk21

n11~v8!

2Fk11
n11~v8!#, ~38!

where

xk,n~v8!52~2n11!F11
2~ iv8k!a

n~n11! G , v85
v

2DR
5vt.

~39!

For k521, n51, we have

F21
1 ~v8!5

g1

x21,1
@12F22

2 ~v8!2F0
2~v8!#, ~40!

where it suffices for our problem to evaluateF22
2 andF0

2 up
to the second order in the ac field only, which yields

F22
2 ~v8!5

1

x22,2~v8!
@g1F21

1 ~v8!#5
g1

2

x21,1~v8!x22,2~v8!
,

x22,2~v8!510@11~22iv8!a/3#, ~41!

and

F0
2~v8!5

g1

10
@F21

1 ~v8!1F1
1~v8!#

5
g1

5
Re@F21

1 ~v8!#

5
g1

2

5
ReF 1

x21,1~v8! G , ~42!

so that

F21
1 ~v8!5

g1

6@11~2 iv8!a#
2

g1
3

360

1

@11~2 iv8!a#2

3F2@11v8a cos~pa/2!#

11~ iv8!a 1
1

11~22iv8!a/3G .
~43!

FIG. 4. Cole-Cole plots of the nonlinear complex dielectric i
crementDX1(v8) for three different values ofa. Full line, a51
~Brownian limit!; dashed line,a50.8; dotted line,a50.5.
8-5
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This expansion gives correct results as long asg1,1. In
terms of the nonlinear electric susceptibilityx1(v8), Eq.
~43! can be rewritten as

x1~v8!5
2F21

1 ~v8!

g1

5
1

3@11~2 iv8!a#
2

g1
2

180

1

@11~2 iv8!a#2

3F2@11v8a cos~pa/2!#

11~ iv8!a 1
3

31~22iv8!aG .
~44!

For a51, we get

x1~v8!a515
1

3~12 iv8!

2
g1

2

180~11v82!

92 iv8

~12 iv8!~322iv8!
,

~45!

which is in agreement with previously derived resu
@22,23#. More interesting experimentally in the application
a pure ac electric field only is the calculation of the th
nonlinear harmonic component of the electric polarizat
given by the evaluation ofF23

1 (v8). Many data related to
the study of disordered media are now available, and
interest in an interpretation of their behavior is still growin
It is important to understand the typical features of such s
tems, essentially characterized by their nonexponential re
ation patterns giving rise to slow diffusion. Among all the
materials, ferroelectric liquid crystals in the chiral smectic
phase@25–28# have caught the attention of many resear
ers. In particular, the third order of the nonlinear dielect
response for such liquids in the Goldstone mode yields ne
tive values in the same manner as those observed fo
equivalent study of free rotating dipoles in ordinary flui
~Langevin saturation effect!. Settingk523 andn51 in Eq.
~38! in order to calculate the third-harmonic component
3v proportional tog1

3, one obtains

x23,1~v8!F23
1 ~v8!5g1F22

2 ~v8!, ~46!

and using Eq.~41!

F23
1 ~v8!52

g1
3

x21,1~v8!x22,2~v8!x23,3~v8!
, ~47!

where

x23,1~v8!56@11~23iv8!a#. ~48!

Therefore, the explicit form for the electric susceptibili
x3(v8) is
03110
n

e
.
s-
x-

-

a-
an

x3~v8!5
2F23

1 ~v8!

g1
3

52
1

60

3
1

@11~2 iv8!a#@31~22iv8!a#@11~23iv8!a#

52
1

60F 1

~2312a!~2113a!

1

11~2 iv8!a

1
22a

~2312a!~2a2311a!

1

31~22iv8!a

1
32a

~2113a!~22a1311a!

1

11~23iv8!aG , ~49!

again in accord with the results of Refs.@21–23# for a51. In
Figs. 5 and 6 are shown the frequency evolution of the
laxation spectra ofx3(v8) as a function ofa. The general
pattern of all these plots is comparable to that already ex
ited by the first-harmonic component@nonlinear dielectric
incrementDX1(v8)], with, however, smaller amplitudes b

FIG. 5. 3D plot of the real part of the third-harmonic compone
x38(v8) of the electric polarization as a function ofv8 anda.

FIG. 6. 3D plot of the imaginary part of the third-harmon
componentx39(v8) of the electric polarization as a function ofv8
anda.
8-6
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a factor of almost two orders of magnitude. Some slight d
ferences are nevertheless visible by looking at the Cole-C
diagrams~Fig. 7! where the skewed arcs are more flatten
due, especially, to the positive values of the real partx38(v8)
in the high-frequency region. We have checked our theo
ical expression for the third-order nonlinear electric susc
tibility x3(v8) given by Eq.~49! by using experimental dat
recently obtained by Kimuraet al. @29# on the ferroelectric
liquid crystal CS 1017~Chisso!: these measurements we
made at 50 °C with an ac electric field of angular frequen
varying from 15 to 2.53106 rad/s. This comparison betwee
theory and experiment is illustrated by the nonlinear rel
ation spectra in Fig. 8 where a quite good agreement ca
observed with the exception of a few points~within the lim-
its of accuracy! at low frequencies due to conductivity an
electrode polarization effects which are not taken into
count in our analytical formulation. A least mean square
leads to the numerical determination ofa and t, namely,a
50.89 andt50.5831023 s.

V. CONCLUSION

In this paper, we have tried to introduce the fraction
approach to the orientational motion of polar molecu
acted on by an external perturbation, such as a tim
dependent electric field. This problem is treated in the c
text of noninertial rotational diffusion~configuration space
only! which leads to solving a fractional Smoluchows
equation. Hence, we consider a physical model correspo
ing to a slow relaxation process~subdiffusion! characterized
by an anomalous exponenta ranging in the interval~0,1!
(a51 for normal diffusion!. The generalization of this dif-
fusion equation including a fractional order rests on
model of the continuous-time random walk. Here, beca
we are dealing with rotations rather than translations, i
preferable to speak of randomly distributed torques hav

FIG. 7. Cole-Cole plots of the third-harmonic compone
x3(v8) for three different values ofa. Full line, a51 ~Brownian
limit !; dashed line,a50.8; dotted line,a50.5.
03110
-
le
d

t-
-

y

-
be

-
t

l
s
e-
-

d-

e
e
s
g

an anomalous waiting time distribution function. We ha
derived in the frequency domain analytical expressions
the electric susceptibilities corresponding to nonlinear ac
tionary responses and valid up to the third order in the e
tric field strength. To illustrate these results, dispersion a
absorption spectra for the first- and the third-harmonic co
ponents have been plotted in order to show the signific
departure from the classical Brownian behavior asa→0.
Moreover, a comparison of our theoretical model with e
perimental data for the third-order nonlinear dielectric rela
ation spectra of a ferroelectric liquid crystal led to a qu
good agreement in fitting these dispersion and absorp
plots. To conclude, we indicate that our approach can
extended to the case of anisotropically polarizable m
ecules. In future studies, we intend to take into account
polar interactions also@30#, with the aim of deriving nonlin-
ear responses in molecular systems where concentra
effects can no longer be neglected, and to compare them
available computer simulations@31#. In such a case, even th
simplest interaction potential gives rise to a coupling of t
longitudinal and transverse components of the polarizat
Moreover, higher-order responses can also be evaluated
ing the matrix continued fraction procedure in the mann
developed for normal diffusion in our previous papers@18–
20#. In addition, we mention that the present theory could
applied with minute modifications to the case of ferroflui
subjected to time-dependent magnetic fields.
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FIG. 8. Third-order nonlinear dispersion («38) and absorption
(«39) spectra for CS 1017~ferroelectric liquid crystal! at 50 °C.
Filled circles are experimental data taken from Kimuraet al. @29#.
The full and dashed lines represent our best fit procedure from
~49! for the real («38) and imaginary («39) parts of the complex
dielectric permittivity«3 , respectively.
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